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INTRODYCIICON

" In a previous work, [1]-I have asoumed the existence of a

genecal type of convecticn-diffusion theorem in continuum mechanics,
and hsve. atudied, the properties of this type of theorem. In this
report IL-demonstrate thait, given a tensor of any order associated

with the motion of a continuum, at least one such theorem exista,
5,
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0, MATHEMATIMAL FRELIMINARIES

I use, essentially, the notaticns and assuwaptions of
Trueadell and Toupin [2]. A short symopsis is included here in
order to make this work essentially ssif-contained. It is empha~

. gized that this work is formal in nature. In particular,

ata.temgnta concerning =moothness conditions on functions are sel-
dom made. In general it is understood, as in formal works on
differential geometry, that ail functions are smooth enox:t.gh to
sccommodate the manipulation performed and vender the results

1y

meaningful. No distinction is made between a function and its
valuss, except where confusion would result if this distinction
were not mads,

? oo The results derived here-are valid in Euclidean thres-
': ' dimensional space. In such a spacé a rectangular Cartesian

; - coordinate syctem always exists. We denote points in this system
= - by the symbols Z,z. A m is-a cne-parameter mipping

. = 8(2,8), Z = Z(s,t), (0.

where ' is a real-vaiusd parameter interpreted as the time., A
poinv s called a particle and 3 point z is cailed a ce, or
space~ sint.

We choose a single curvilinear coordinate system given by

" = {’3.
x = glz), X = e&(2), ot 2)

vhere g is the same function in both zf:r-u?_tiéns.‘ The 5 are called
N o - -
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material coordinstes, and the x are called spstinl coordinates.
It is convenlent to use itwo systems of notatior  The ito-
taticn of general, double tensors is used when it is dosired to

emphasize the camponents of an equa.tion‘. Here capital Boman™

indices denote quantities which transform as tensors with respect

to changes in the material coordinates E » and lower-case Roman
indices denote guantities which transform zs tensors with ieapsct
to the spatial ccordinates 35***. The diagoral summation convertion
is used, and all indices have the values 1,2,3. '

When display of indices would cloud the rhysical signif-
jcance of an equation, direct notation is used.

Let arc lengths at} and §be given by

o = gxia

dsz = Sai,‘?xadxb ;

(0.3)

Byp a1 g, are the components of the contravariant material and
spatial metric tensors. Cristoffel symbols b#sed on these tensors
are defined in the usual manner. ' '

Let §{x,X) be the componentz of a mixed double tensor
field. The rotation §il;, denotes the covariant derivative of §

Moubie tensor fields are discussed in greater detail in[ 3].

#WMhis is a siight departure from the nctation of [1J, which uses
lower-case Gresek indiceg in this situation and upper-case Roman in~
dices when the spatial and material coordinates are independently
selected,

o

Frhe exceptions are, of cource, the sets of coordinates X, XA; X,
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a
with Tespect to X* when the x are held constant. This derivative

is called the partial covariant derivative *, and 1g dencted by a

COMMA »

s % re
A8 o B '& 33 ¢ | (0.4)

whers ?GXB is performed with all of the &8 , and all of the KD,

D # B, held constant.

The partisl covariant derivative with respect to spatial
soordinates is defined in an anslogous manner.

Let a one-parameter mapping between X and X be given by

the composite of {.1) and (0.2},
A N A ~ . - r ‘: *
X = X(X,t) 3 x = x(x,}} . \0‘5}
As ~ o ~ -~ - . ,_.4.
The tota] govariant derivative of a mixed double field $:1i(x,X) is o
given by .-
bas "7 o e, tie a2
tt!;ﬁ = én.’A + i‘.’t’a'% » (c'é}
This derivative has the properties that when $...is of the
e
form Q&"k‘gg) or ‘:_"“g (f), then 9. ;g Teduces to 9"-,3 or @Z::,e %?
respectively, and if the operation ;g is performed on %(E,ﬁ) then
® This discussion on partial and total covariant derivatives is
basued on [3].
4
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X is replaced by :E(X,t) s thie same result is obiained eg if the oper-
Ed

ation ;E were performad on ﬂ?ﬁi{::c(lg., t34).

A
gz;‘.;;,a =¢.] ot 1 3 A 35-;— .
3 ? 2 axa

If we define the Kronschker delta in the wsual mannsr, then

x> et

oy
g
ard by (0.6) and (0.7

P a
EHY @--.;ag_x_;_ s

gt

gL =hn, w

4 "";a "‘;.ﬂ" —r

ax™

Deformation gradients are defined by

"o
I
"”

3 é. F.
.=;¥-; —X“ 2‘53:‘3
£ ’a’ A .ax

o

g:‘ﬂ
B

28

and composite deformstion gradients are given by

B _ ..« oB
f:,..b-fi. b, Y0

o

t-.b‘.; & s>
F;""B . E?‘. * e FB ’

The expansion is the absolute scalar J given by

wh

(¢.7)

{0.8)

bt 1. €,
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detg
g= Yab o (2

detgAB

E}XA (0.14)

The velocity of a particle is given by

a
ca _ X 0.15
where the partial derlivative is taken with '}S held constant.,

Let #(x,X,t) be 2 double tensor. The material derivative

of ¢ is the double tensor with components

- 35221 . ‘
d + g n- xg . (0.16)
where the partial time derivative is taken with both X ana X held
fixed, and ' denotes the partial covariant derivative with respect.
to xg.' This derivative is a double tensor whose value is independent
of whether x is replaced by %()E,,t). It is often convenient to write
d =
il V=0 .

In this work, we adhere to the convention that either the

material or the spatial description is used, but not both. That is,

all functions are written in terms of x and t, or in terms of ’}\(' and

t.
It is well-known that®
. b
E%{"a:A) =&, = I S (0.17)
T
1. §76.
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Let J be given by (0.14). Then Euler's expansion formula

is

J=dx7, . (0.18)
The acceleration is defined by

.ia = a_%(ka) . (0019)
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1. A COMMUTATION FORMUIA

Consider a double tensor field with components & é“"?’ff.

.« sl

We have

wBa :
ﬁana = % DC n(Bf } OH\QBb , \
C...De, e o C,,hl')c umnb . {1.1:

so tliat by »{f‘«.é} . B
I aaﬂf“ D8 B 28 gt o
Cer. Dy © NG 3:f$ (fe) ‘C...,Dc HXE :

LBe e 7 : :
=. R g e - Ty
?&,mf) ’E d ) - . o (1.2}

By (009)9 24.2) )‘Qm‘.is - - -

w2 . Ao (1.3)
CcleD':;ye x ’E- ﬁé"‘fﬁc}E’

and by th:e convéntion that -only i{t{n_e material or the spatial descrip-

tion is used, but net’bcth, we ha};:a

# wB& ._e — doc &
4

<De,e * 'k = PoDeg. . (1.4)

R




s By (1.4} 358 the rule fo- lfisvantizting pre ucta
L fanetions

EEN g )
N ,: - tiz ?". T -y 55& A-»2 8 ~
r & o 3 {'_‘r”,' ? i P \‘
T c..u.zc,e“" 3g 0 R Be.e VR {35

in .‘“}'/u’,& *v‘f"y’m{f [T R

|
i
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1
{
1
+
i’ My
BB
b
'}.D
3
7~
™

o v-.,& LA k "}
* C...0c,e Xog X (1.

AT e TP Gy g

< The last two terms in (1.7) cancel, giving

E d, .. Ba ) .. P8 N

C...Dc,e * °E * (1.8)

IR RO g

& ' atYe...De,E

e

By (1.4), (1.8} is

d ‘e = ~ ;..& .
d—t'(pc...Dc,") C...De,F * (1.9)

* (2], p. 338
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for a tensor of the form coxlaii:ie;‘ad ?;s“t' s the paridal cevariant
dvrivative ";," commute. 7
_ I.n fact, the proof giVen abovs. e}m‘.ends easily to the
g#nersl cese of any tensor function w,’rhh any combination of covariant
'gb';ﬁc‘,;c“,ontra,variant, msterial and spatial indlces. That J,e, for any

" ‘tgnso or_function ¢ of the type considered heve, "(-5%-" and “",p" gommute,

(§§-’),E =50, ,
@0 p =TT . ~ - @

.. A formula gmalcgous to {1.10) but containing a spatial -
gradient is £t Usitig (1.10) and an cbvious generalization of

(;».J,) wehah. 7

) "C S - .

A \ggg -‘,g t«(ﬂ’,ex g) - {1.11)
By the limma {0.17}, this becames

g 5
= B 45

(1.12) -
Multiplying (1.12) by X°,g, using (0.8), and resrranging some
indices gives .
d L L X
Et.m’e) - (&g‘;)’s z’k K g
(1.13) .

Hgred #) - arad (@) = - gad # . grac £,




ATy

vwhich is the desired rosult.
The equaticns {1.10) an¢ {1.13, sre equivalent. It will
be shown that either can be used in deriving a certain special but

important type of convection-diffusion theorem.
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2. GENERAL CONVECTION-DIFFUSION THEOREMS

A survey of recent developments in convection-diffusion

thecry and a study of the properties of a convection-~diffusion

T T T

theorem of a very general type have been given in [1]. In this

.section I demonstrate that, given a property of a particle of a

continmfm, with the property expresssd as a tensor of a certain

form, there is always a convection-diffusion theorem for that

property. Furthermore, this convection-d.ffusion theorem is a

: special case of the type studied in tl} .

. Consider a composite deformation gradient Fi%:’l; {no suz=
mation on n). An explicit form for its material derivative has been

given in [1]. It is

n ’ - - .
ety & Gyendg 8i40..R ;.
Ay i=] 1 Apohbiyy At (2.1) '

An easy calcuiation leads to

S n Z g1 By 3341.-%n (2.2)
3 . ’ »
3 hlo iAn i_l Aloooki -1 Ai Ai+1.-'An
or
n-1 2 v .
}3 - Z &l Ui-l #3413
‘1"' n 4= Y Fapehig A ApnAy
v
+x v A .
Al n-1 n .
Defining S'QI I 5.:: in the obvious manner, we have
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Consider a tensor with covariant components a RS Form
he material expression a .. b Fi ”g Then

d 2By o s B :a...
e A B =8 b FAlE T 2. FALB - (2.5)

Integrating along the path of a particle yields

b g a..b o a..b
aa’uh F:-.-B A"'B *f (a D FA B b FZ;»;B)dt’ (2.6)

o

where AA B is the value of 4, ..b at t=0. Using the definitions
(6.12) and {0.13) and the property (0.8), we obtain from (2.2) the
general convection-diffusion thecrem

- | .B
A .B f(ac da .B 3. d}ﬁ B)dt} fa. * (2.,‘?)1

This equation states that the present value of a associated with a
particular particle is the result of two processes, The firsi,
expressed by the term

A fA...B

AQ--B aocob
is the ahift of the initial value of 3 to its present position, ard

is independent of the intervening motion. It is called convection.

*Thias can be further simplified by using (2.2).

~ e e e
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X
e
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The second process, expressed by the integral
t
2Ce.d gS--d
f (o, q Famp *2c..q Folpllt -
[+]

is called diffusion. It is seen that diffusion is a functional of

. the historles of g and the motion. It has been pointed out by

Passman [4] that convection and diffusion are not unique processes.
The special case of (2.7) where a can be written as the

spatial gradien‘t of another tensor is of considerable interest in

continuum mechanics. Let thers exist 2 tensor b such that

aa...‘oc = ba...b,e

The appropriate form of (2.7) is

c...df
) ba... b,e '[ BA .B,E +j c...d,r Fg .BE

t}tA BE

. ' (2.8)

+b

c..d,f By BE)d (2.9)
By (1.13), this beccmes
- = " - ‘u Cs. df
%a...b,e [BA...B,E +I: ([bc.,.d,f- bc‘.‘d,tx ’f] F «.BE
e...4f .. BB (2.10)
LR FA.-BE)“] hre .
Substituting (2.4) into (2.10) gives
r t » c df
Ps..bye = [BA...B,E + f o Pea,r FalmE
c...4f e BB
+o, 4,2 5y BE)‘“'] e - (2.11)
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RSt HoEpAnt it

Most of the convection-diffusion theorems familiar in contiruwm
mechanics are consequences of (2.11). _
The important relation (2,11) can be derived by an alter-
nate method. Form the material expression b Faeeed, By the
a LR 4 .b,E A. L 3 .B
commutation formula (1.10)

| Ly Fa"'b) =% PPy @b
dt*a...b,E "4...B a...,b,E "A,.B a..b,E"A.B? (2.12)
which by the genersiization of (l.l;) , ie
'd—g(ba...b,e F:.g;) = 1;'z-.vs,..b,e F::“.‘g;
+, ne BBTE a2

The resvit (2.11) follews by the obvious sequence of steps.

15




i

(AN

H G

SRt R

SN L AR TR A D St

bRy

3t

(]
(2]

£3]
(4l

REFERENCES
Pagsman, S. L.t Convection-diffusion theorems. U, 8, Naval
Academy, Engineering Department Report 69-2 (1969),

Trussdsll, C. A. and R, A, Toupin: The Classical Field
Theories. Handbuch der Physik II1/l, Berlin (1960).

Fricksen, J. L.t Tensor Fields. Appendix to [21.

-Passman, S. L.t Two theorems in classical vorticity thecry.

Fortheoming.

16




S I e v b oy

Sl R

) ‘ge;utih_!&ssiﬁcﬂktn _ -
DOCUMENRT CONTROL DATA-R& D

(Slt-w“y ;lnﬂmaiicn of thils, body of abstiact and Indcring &2000tics vl Lo Eritred when the sverall tepotl i3 clasgifiedy

3. inr;‘"u:rius AC!SV!TY.{cefpdfﬂ!l l”m’tj 25, REI'ORY SECURITY CLAST L ATiIOM
] ENGINEERING DRPARIMENY UNCLASSIFIED
UNITED STATES NAVAL ACADEN 1b. enoun
ANHAPOLIS, MAKYLAND :
" §3. REPOART TITLE . T

A CJHMGTATIO}'I FOrMULA IN CONTINUUM MECHAYICS

4. DXSCRIPTIVE NOTES {Type of 16peti and inclusive datss)

$: AUTHORAISY (Firs! Acme, micdie inlifel, {sat nane}
STEPHEN L. PASSMAN s

“A plsusibility argument is given for ths sxistence of a
certain commutation formuis is given. This formuia is then used
to derive a general type of -zonvection - diffusion theorem which.
gensralizes & classical formula in kinematical vorticity theory. .

-

P

stiany
o

k3

-

8. REPORT OATE . i . J6 TOTAL KO, GF PAdES 5. NG, OF KEFY

JULY 1969 ) 16 B

3C. CONTRACY OR GRANT NO. 5, ORIGINATOR'S KEPORT NUMBERIS)
5. DROJECT MO, : ) {1 E~ 69«3 .

. . ) OTHER & 3 3315
£, ) 7 ) b w:m”lgpoar HOU3 {Any sther numbers 15af fmcy 24 *isigmed
. ’ . ) ?

39, DUITMBUTION STATEMENT -
Distridbution of tnis document is unlimited.
13 SUPPLEMENTARY NOTKS !;. BPOMICAING MILITARY ACTIVITY
- » . - -
. . - -
I3 ARBTAACY . . - = -

> : ’ ’
’  * . hd * ’
™y FORU s aE =
Bt) t nov ui ";S /. (PASE 1) i, ROKE
S/t 0101-807-3A11 . e T Secunty Ciazminieauen .

W

v

n s

XN RSO

RORLTRY

v




.
Security Classiflcation . ~ v e
V4. . KEY WORDS LINK A LINK B Lihw & g
n ROLE wT Rpl.t w1 RGLL WY :
‘1 Convection
Diffusion
1 Fluid Mechanios .
Continuum Mechanics
Circulation
Vorticity ) ) T
|
. i
!
' .
3 . ) H
- . ¢
¥
3 - 7
I
1 {
DD Fom 1473 sack NONE
’ §/8 0101-€0%-57. Sacurity Classilication As31409




